Results

Statistical Assumption Tests

The dependent variable (i.e., productivity) was continuous. The visual inspection of the productivity boxplot showed that there were two extreme scores, which were subsequently removed. The Shapiro-Wilk statistic was non-significant which indicated that the productivity scores were normally distributed, $p^{1}=.253^{2}$. The inspection of skewness and kurtosis z-scores of the productivity distribution also showed that the assumption of normality was met, $z_{\mathrm{s}}=.52$ and $z_{\mathrm{k}}=.89^{3}$.

Further, the Levene's test of equality of variance revealed that the assumption of homogeneity was violated, $p=.007$. However, given the moderate and approximately equal sample size in each group, ANOVA is thus considered robust for this degree of violation. ${ }^{4}$

Main Effect Analyses

A 3 (Workplace Recreation: Physical Activity, Non-physical Activity, Absence) x

2 (Gender: Male, Female) between-participant factorial ANOVA was conducted on

 productivity.Findings revealed a significant main effect of workplace recreational activities on work productivity, $F(2,419)=25.11, p<.001, \eta^{2}=.56$. However, there was no significant main effect of gender emerged, $F(1,419)=1.82, p=.586, \eta^{2}=.07$. This indicated that overall male $(M=5.8, S D=1.1)$ and female employees did not differ in productivity $(M=5.2, S D=1.3)$.

Main Effect Comparisons

To follow up the main effect of workplace recreation ${ }^{6}$, three pairwise t-tests were conducted to compare the main effect of workplace recreation, each evaluated at $\alpha=.05$.

Results revealed that employees who did not participate in any recreational activity ($M=3.9$,
$S D=1.2$) displayed significantly lower productivity than those who participated in the non-

Commented [KC1]: 1. Italicise English letters.
2. Report exact p-values up to 3 decimal points. Except when output says " $p=.000$ ", report it as " $p<.001$ ", or " $p=1.000$ " then report it as " $p>.999$ ".

Commented [KC2]: 3. Normal zs \& zk must fall within the range of ± 1.96.

Commented [KC3]: 4. Justify why you continued to use ANOVA to analyse the heterogeneous data.

Commented [KC4]: 5. Mention the analysis design.

Commented [KC5]: 6. Do follow-up analysis (pairwise comparison) only for (a) the significant main effect and (b) the IV with more than 2 levels (i.e., here, physical activity vs. non-physical activity vs. absence).
physical recreational activity $(M=5.5, S D=0.9), t(419)=-16.67{ }^{\prime}, p=.001,95 \%$ CI [-18.98, $-11.16]^{8}$, or in the physical recreational activity $(M=6.4, S D=0.7), t(419)=-6.87, p<.001$ 95\% CI [-7.72, -5.44]. Likewise, employees who participated in the non-physical recreational activity showed significantly lower productivity than those who participated in the physical recreational activity, $t(419)=-5.13, p=.002,95 \%$ CI [-7.75, -2.50]. In addition, results revealed a significant interaction effect between workplace recreation and gender,
$F(2,419)=5.11, p=.011, \eta^{2}=.22$.

Simple Effect Analyses

This was followed up by performing simple effect analyses of workplace recreation at each level of gender. ${ }^{10}$ Findings revealed a significant simple effect of workplace recreation for males, $F(2,419)=28.56, p<.001, \eta^{2}=.48$, but not for females, $F(2,419)=0.70$, $p=.456, \eta^{2}=.03$. Therefore, female employees in the physical recreational activity $(M=5.9$, $S D=0.8)$, the non-physical recreational activity $(M=5.7, S D=1.1)$, and the absence $(M=5.3, S D=0.8)$ conditions did not differ in work productivity

Simple Comparisons

To follow up the simple effect of workplace recreation among male employees ${ }^{11}$, three simple comparison analyses (planned pairwise t-tests) were performed, each evaluated at $\alpha=.05$. Males who attended the physical recreational activity displayed significantly higher average productivity $(M=6.6, S D=1.3)$ than males who attended the non-physical recreational activity $(M=5.4, S D=0.9), t(419)=8.01, p=.008,95 \%$ CI $[6.01,9.71]^{12}$, and males who did not attend any recreational activity $(M=5.1, S D=1.4), t(419)=2.38$, $p=.001,95 \%$ CI $[1.43,3.87]$. However, there was no significant productivity difference in males who attended the non-physical recreational activity and males who did not attend any recreational activity, $t(419)=0.37, p=.135,95 \%$ CI [-1.25, 2.77]

Commented [KC6]: 7. Hand calculate t-values by

```
t=\frac{Mean Difference }{\mathrm{ StdError }},df=d\mp@subsup{f}{\mathrm{ Error }}{}
```

Commented [KC7]: 8. Again, SPSS does NOT provide CIs for t-values. Hand calculation can be done using the "Multiple Comparisons" table (in SPSS output) by
$L L=\frac{\text { Lower Bound of Mean Difference }}{\text { Std }}$
$U L=\frac{\text { Upper Bound of Mean Difference }}{\text { StdError }}$

Commented [KC8]: 9. Follow up effect of the focal IV at each level of the other factor. Do Simple Effect Analysis only if the interaction effect is significant.

Commented [KC9]: 10. Always check your Testing Hypothesis (H1) to identify the focal IV (in this example, the focal IV is Workplace Recreation - not Gender)

Commented [KC10]: 11.Conduct follow-up analysis (pairwise comparison) only if (a) the simple effect is significant, and (b) there are more than 2 levels to compare (i.e., physical activity vs. non-physical activity vs. absence) Note: Do NOT follow up non-significant simple effect!

Commented [KC11]: 12. Look at the Main Effect Comparisons for how to hand calculate t-values and their CIs in page 2.

