

Chi-Square

Learning Centre

www.jcu.edu.sg

CONTENTS

- 1. What is a Chi-Square?
- 2. Types of Chi-Square Tests
- 3. A worked example on SPSS
- 4. Reporting

- A Chi-Square is a non-parametric test that can be used if your data do not fulfil assumption requirements to conduct a parametric test
- Chi-Square tests are also used when a DV is ordinal or nominal

Types of Chi-Square Tests

Goodness of Fit

To assess if observed membership in a group is different from expected membership

Test of Independence

Used commonly to evaluate if two nominal variables are related 01

The JCU cafeteria team was interested to find out if students prefer some flavours of Coca-Cola over others.

To test this, the staff of a drink stall asked 100 students of their preferred drink: Normal coke, Diet coke, Coke zero, or Vanilla coke.

More background info...

- In a Chi-Square analysis, we are assessing if there is a difference between an observed frequency and an expected frequency
- If students had no preference for any type of coke, we would expect to see roughly an equal number of 25 students in both observed and expected cells for each flavour

More background info...

- The observed frequency will come from the actual choices that the 100 students made
- We then compare the observed and expected frequencies if this happens by chance?

Location of SPSS Data Files

Example SPSS data for practice are available on LearnJCU:

Log in to LearnJCU -> Organisations -> Learning Centre JCU Singapore -> Statistics Support -> Statistics Resources -> SPSS Data for Practice

aSet1] -	IBM SPSS Stat	tistics Data E	ditor	
<u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze	<u>G</u> raphs	<u>U</u> tilities
🧊 De	fine <u>V</u> ariable F	Properties		
🄏 Se	t Measuremer	nt <u>L</u> evel for U	Jnknown	
<u>[]</u> <u>C</u> o	py Data Prope	rties		
Ne Ne	w Custom Attr	i <u>b</u> ute		
D <u>e</u>	fine date and	time		
🔡 De	fine <u>M</u> ultiple R	esponse S	ets	
Va	lidation			•
불 Ide	ntify D <u>u</u> plicate	Cases		
😋 <u>I</u> de	ntify Unusual	Cases		
💦 Co	m <u>p</u> are Datase	ets		
🔊 S <u>o</u>	rt Cases			
式 So	rt Varia <u>b</u> les			
💐 Tra	nspose			
Me	r <u>q</u> e Files			•
₩ <u>R</u> e	structure			
🔁 Ag	gregate			
Or	t <u>h</u> ogonal Desi	gn		•
💦 Co	py <u>D</u> ataset			
iii Sp	lit <u>F</u> ile			
<u>S</u> e	lect Cases			
4 <u>W</u> e	ight Cases			

Before we run the analysis data, we will need to carry out an additional step:

Click on Data -> Weight Cases

- Select <u>Weight cases by</u>, and bring the variable 'Frequency' over to the right
- Click OK, we can now run the goodness of fit analysis

To run a Goodness of Fit test:

 Click on Analyze -> Nonparametric Tests -> LegacyDialogs -> Chi-square

<u>Analyze G</u> raphs <u>U</u> tilities	E <u>x</u> tensions	<u>W</u> indow <u>H</u> elp
Re <u>p</u> orts	•	
Descriptive Statistics	•	
Bayesian Statistics	•	
Ta <u>b</u> les	*	ar var var var var
Compare Means	*	
<u>G</u> eneral Linear Model	*	
Generalized Linear Models	*	
Mixed Models	*	
<u>C</u> orrelate	*	
Regression	*	
Loglinear	*	
Neural Networks	*	
Classify	*	
Dimension Reduction	•	
Sc <u>a</u> le	*	
<u>N</u> onparametric Tests	•	
Forecas <u>t</u> ing	•	A Independent Samples
<u>S</u> urvival	۰.	Related Samples
Multiple Response	•	
🚰 Missing Value Anal <u>v</u> sis		

- Select 'TypeOfCoke' and move it to under the <u>Test Variable List</u>
- We can leave all other options as the default
- Click OK!

Prequency		Test Variable List:	E <u>x</u> act Options
	•		
Expected Range		Expected Values]
© U <u>s</u> e specified range Lower:		© Values:	
Opper.		<u>C</u> hange R <u>e</u> move	

Writing up the results...

An example write-up can be found on page 263 in

Allen, P., Bennett, K., & Heritage, B. (2019). SPSS Statistics: A Practical Guide (4th ed.). Cengage Learning.

Test of Independence Example

02

To build on the earlier example, the JCU cafeteria team now thinks that the choices students made could be related to their weight.

To test this, another 200 students were asked to choose between the 4 types of coke, and also indicate if they were underweight, overweight, or of averaged weight

Were the students' weight and their choice of coke related?

To conduct a test of independence:

Click on Analyze ->
Descriptive Statistics ->
Crosstabs

PSS Statisti	ics Data Edi	tor				
<u>A</u> nalyze	<u>G</u> raphs	<u>U</u> tilities	E <u>x</u> tensions	<u>W</u> ind	ow	<u>H</u> elp
Repo	rts		•			A (
D <u>e</u> scr	riptive Statis	stics	•	123 <u>F</u> re	quen	cies
<u>B</u> ayes	ian Statisti	cs	•	bes	script	ives
Ta <u>b</u> le	s		•	🔩 Exp	lore	
Co <u>m</u> p	are Means	1	•	Cro	eetal	he
<u>G</u> enei	ral Linear N	lodel	•			
Gene	rali <u>z</u> ed Line	ar Models	•	<u>III</u> <u>R</u> at	10	
Mixed	Models		•	📌 <u>Р</u> -Р	Plots	S
<u>C</u> orre	late		•	🤧 <u>Q</u> -C	2 Plot	S
<u>R</u> egre	ssion		•			
Loglin	near		•			

- Shift 'TypeofCoke' over to under <u>Row(s)</u>, and 'Weight' to under <u>Column(s)</u>
- Click on <u>Statistics</u> to tweak some settings...

Crosstabs		×
Frequency	Row(s): TypeOfCoke Column(s): Weight Layer 1 of 1 Previous Next	E <u>x</u> act Statistics C <u>e</u> lls Eormat Style Bootstr <u>a</u> p
Display clustered <u>b</u> ar charts	Display layer variables in table layer:	S
OK I	Paste Reset Cancel Help	

- Select Chi-square
- You can also select *Phi and Cramer's V* to obtain effect size
- Click Continue

🔄 Crosstabs: Statistics	×
√ C <u>h</u> i-square	Correlations
Nominal	Ordinal
Contingency coefficient	🔲 <u>G</u> amma
Phi and Cramer's V	🔲 Somers' d
🔲 Lambda	📃 Kendall's tau- <u>b</u>
Uncertainty coefficient	📃 Kendall's tau- <u>c</u>
Nominal by Interval	🔲 Карра
🔲 <u>E</u> ta	Risk
	McNemar
Cochr <u>a</u> n's and Mantel-Hae	enszel statistics
<u>r</u> est common odds ratio e	quais: 1
Continue Cancel	Help

- Next, click on <u>Cells</u>
- Select 'Observed' and 'Expected'
- This will provide us with descriptive statistics that we can use in our write-up
- Click Continue, and OK!

✓ Observed	Compare column proportions
Expected	Adjust p-values (Bonferroni method)
Hide small counts	
Less than 5	
- Dereentegee	Pagiduala
Percentages	Residuals
<u>R</u> ow	Unstandardized
Column <u>C</u> olumn	Standardized
🛅 <u>T</u> otal	Adjusted standardized
Noninteger Weights	
Round cell counts	◎ Round case <u>w</u> eights
O Truncate cell counts	Truncate case weights
O No adjustments	

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 7.69

Writing up the results...

An example write-up can be found on:

JCUS Learning Centre website -> Statistics and Mathematics Support

Any questions?

learningcentre-singapore@jcu.edu.au

www.jcu.edu.sg