

MANOVA

Learning Centre

www.jcu.edu.sg

Table of Contents

01 02 03 What is MANOVA Types of MANOVAs Worked Example

Multivariate Analysis of Variance (MANOVA)

•

- The Multivariate Analysis of Variance (MANOVA) is an extension of the ANOVA
- While we only deal with ONE DV in ANOVA, MANOVA accounts for multiple DVs at once
 - It wants to know if there are mean differences across groups on multiple DVs; it is suitable to test related DVs – e.g., testing depression, anxiety, and stress across groups at one go

- Similar to ANOVAs, there are between and within subjects MANOVAs
- If there is one IV, we call it a one-way between/within subjects MANOVA; if there are two IVs, we call it a two-way between/within MANOVA
- A test that mixes both between AND within IVs is called mixed MANOVA

We will focus on 'one-way MANOVA' in the next slides!

I am interested in finding out if coffee consumption affects anxiety and fatigue levels.

To test this, I shall recruit 100 participants and randomly assign them into 2 groups: an experimental group who will drink a cup of coffee, and a control group who will drink a cup of water.

I will then ask each participant to rate their level of anxiety

and fatigue.

Dr Tony Lim World Class Researcher

In this example, we have 1 IV with 2 levels: Coffee vs. Water

We have 2 DVs: Anxiety, Fatigue

Thus, it is appropriate to conduct a one-way between subjects MANOVA

Location of SPSS Data Files

Example SPSS data for practice are available on LearnJCU:

Log in to LearnJCU -> Organisations -> Learning Centre JCU Singapore -> Statistics Support -> Statistics Resources -> SPSS Data for Practice

Assumptions Testing

- Normality (Shapiro Wilk)
- 2. Univariate Outliers (Boxplots)
- 3. Multivariate Outliers (Mahalanobis Distances)
- 4. Multicollinearity (Correlation)
- 5. Linearity (Scatterplot)
- 6. Homogeneity of variance-covariance matrices (Box's M)

*You can meet other criteria before/during data collection, such as independence of observations (each participant can only take part in the study once), and ensuring adequate sample size in each cell (through a power analysis)

1. Normality

Go Analyze -> Descriptive Statistics -> Explore

IBM SPSS Statistics Data Editor

ilyze	<u>G</u> raphs	<u>U</u> tilities	E <u>x</u> tensions	<u>W</u> indow	<u>H</u> elp	
Re <u>p</u> or	ts		•		A	
D <u>e</u> scr	iptive Statis	stics	•	123 Frequencies		
<u>B</u> ayes	ian Statisti	CS	•	Descriptives		
Ta <u>b</u> les			•	A Explore		
Co <u>m</u> pare Means			•	Crossta	abs	
<u>G</u> ener	al Linear N	lodel	•		nalvsis	
Generalized Linear Models			•		anaiyoto	
Mixed Models			•	Matio		
Correlate			•	2 P-P Plo	ts	
<u>R</u> egre	ssion		•	<u> Q</u> -Q Plo	ts	
Loglinear			•			
Neural Net <u>w</u> orks			•			
Class	i <u>f</u> y		•			
Dimension Reduction			*			
Scale			•			

1. Normality

 Move 'Anxiety' and 'Fatigue' to the <u>Dependent List</u>, and 'Condition' to the <u>Factor List</u>

- Tick 'Normality plots with tests
- Continue and OK

JAMES COOK UNIVERSITY SINGAPORE

1. Normality

Looking at Shapiro-Wilk tests, anxiety data in the one-cup water condition were not normally distributed, p = .014.

However, MANOVA is generally robust to a moderate violation of normality, we will continue to do the analysis for now.

		Kolmogorov-Smirnov ^a			5	Shapiro-Wilk	
	Condition	Statistic	df	Sig.	Statistic	df	Sig.
Anxiety	1 Cup Coffee	.200	20	.035	.917	20	.088
	1 Cup water	.216	20	.016	.874	20	.014
Fatigue	1 Cup Coffee	.182	20	.080	.924	20	.117
	1 Cup water	.182	20	.082	.911	20	.066

Tests of Normality

a. Lilliefors Significance Correction

2. Univariate Outliers

The assumption of univariate outliers can be tested via inspecting boxplots

Go Analyze -> Descriptive
 Statistics -> Explore

IBM SPSS Statistics Data Editor

nalyze	<u>G</u> raphs	<u>U</u> tilities	E <u>x</u> tensions	<u>W</u> indow	<u>H</u> elp
Re <u>p</u> or	rts		•		
D <u>e</u> scr	iptive Statis	stics	•	123 <u>F</u> requer	ncies
<u>B</u> ayes	ian Statisti	CS	•	🗄 <u>D</u> escrip	tives
Ta <u>b</u> le	s		•	A Explore.	
Co <u>m</u> p	are Means		•	Crossta	ıbs
<u>G</u> eneral Linear Model			•	TURF A	nalvsis
Gene	rali <u>z</u> ed Line	ar Models	•	Ratio	
Mi <u>x</u> ed	Models		•	<u></u>	
<u>C</u> orre	late		•	P-P Plot	ts
<u>R</u> egre	ssion		•	<mark>参 <u>Q</u>-Q Plo</mark>	ts
L <u>og</u> lin	lear		•		
Neura	il Net <u>w</u> orks		•		
Class	i <u>f</u> y		•		
<u>D</u> imer	nsion Redu	uction	•		

2. Univariate Outliers

 Move 'Anxiety' and 'Fatigue' to the <u>Dependent List</u>, and 'Condition' to the <u>Factor List</u>

- Under <u>Plots</u>, select 'Dependents together'
- Continue and OK

2. Univariate Outliers

Looking at boxplots on the right, we can assume that there are no univariate outliers.

An example of an outlier (if

there was one)

3. Multivariate Outliers

This assumption can be tested via the <u>Mahalanobis Distances</u>

•

Analyze -> Regression -> Linear

IBM SPSS Statistics Data Editor

S N F

e	<u>G</u> raphs	<u>U</u> tilities	E <u>x</u> tensions	<u>W</u> ind	low	<u>H</u> elp	
e <u>p</u> or	ts		•			A	
escriptive Statistics			•			1	
ayesian Statistics			•				
a <u>b</u> les	5		•	var		var	var
o <u>m</u> p	are Means		•				
ener	al Linear N	lodel	•				
ener	ali <u>z</u> ed Line	ar Models	•				
i <u>x</u> ed	Models		•				
orrel	ate		•				
egre	ssion		E.	🗾 <u>A</u> ut	omat	ic Linear M	lodeling
oglin	ear		•	Lin	ear		
eura	l Net <u>w</u> orks		•	Cu 🗸	rve Es	stimation	
lassi <u>f</u> y			•	Real Least Squares			
imension Reduction			•				
c <u>a</u> le			•	Dill			
onparametric Tests			•	Multinomial Logistic			
oreca	as <u>t</u> ing		•	K Or <u>d</u> inal			
urviv:	al		•	🐰 <u>P</u> ro	bit		

3. Multivariate Outliers

Move 'Anxiety' and 'Fatigue' to the <u>Independent(s)</u> box, and 'Condition' to the <u>Dependent</u> box

tinear Regression		×
 SerialNumber Anxiety Fatigue 	Dependent Condition Block 1 of 1 Previous Independent(s): Anxiety Fatigue Method: Enter Sglection Variable:	Statistics Plots Save Options Style Bootstrap
	Case Labels: WLS Weight WLS Reset	

In <u>Save</u>, under *Distances*, select 'Mahalanobis', continue

3. Multivariate Outliers

Under <u>Residuals Statistics</u>, **Maximum** Malal. Distance = 5.267

This value is *smaller* than the chisquare value at df = 2, $\alpha = .05$, which is 5.991 *Refer to a the critical value in the Chi-Square table; df = number of DVs

This indicates no multivariate outlier

Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	.68	2.31	1.50	.393	40
Std. Predicted Value	-2.074	2.071	.000	1.000	40
Standard Error of Predicted Value	.056	.131	.087	.022	40
Adjusted Predicted Value	.63	2.37	1.50	.397	40
Residual	752	.557	.000	.319	40
Std. Residual	-2.295	1.699	.000	.974	40
Stud. Residual	-2.339	1.724	.000	1.006	40
Deleted Residual	781	.573	.000	.341	40
Stud. Deleted Residual	-2.500	1.774	005	1.027	40
Mahal. Distance	.147	5.267	1.950	1.429	40
Cook's Distance	.000	.240	.023	.040	40
Centered Leverage Value	.004	.135	.050	.037	40

a. Dependent Variable: Condition

The assumption of multicollinearity can be checked via a *correlation analysis*

• Go to Analyze -> Correlate -> Bivariate

*Check out how to run correlation analysis in the **Correlation** slides (JCUS Learning Centre website -> Statistics and Mathematics Support)

In the <u>Correlations</u> table, two DVs are slightly correlated but *not* too strong, r = .172 (less than .7)

Therefore, no violation of multicollinearity

Correlations

		Condition	Anxiety	Fatigue
Pearson Correlation	Condition	1.000	766	258
	Anxiety	766	1.000	.172
	Fatigue	258	.172	1.000

5. Linearity

This assumption can be tested using *scatterplots*

Graphs -> Legacy Dialogs
 -> Scatter/Dot -> Simple
 Scatter -> Define

Utilities Window Help Graphs Extensions 💼 Chart Builder... Graphboard Template Chooser... -- Weibull Plot... Compare Subgroups var var Legacy Dialogs <u>∎</u>ar... 3-D Bar... 5 5 🚅 Line... 8 5 \land Area... 5 🔁 Pi<u>e</u>... 5 High-Low... 5 8 Boxplot... 6 5 III Error Bar... 6 8 5 A Population Pyramid... 6 6 Scatter/Dot... 5 5 🔒 Histogram... 7

tatistics Data Editor

JAMES COOK UNIVERSITY SINGAPORE

5. Linearity

Go Graphs -> Legacy Dialogs -> Scatter/Dot -> Simple Scatter -> <u>Define</u>

- Move 'Fatigue' as the <u>Y</u> <u>axis</u>, 'Anxiety' as the <u>X</u> <u>axis</u>, and <u>Set Markers By</u>: 'Condition'
 - OK!

🔗 SerialNumber		Y Axis: Fatigue	<u>T</u> itles
	•	X Axis:	
	•	Set Markers by:	
	•	Label <u>C</u> ases by:	
	Panel	Bows:	
	•		
		<u>N</u> est variables (no empty rows) Columns:	
	•		
		Nest variables (no empty columns)	
Template	ions from:		

5. Linearity

On the output file, **double click** the scatterplot to open the <u>chart editor</u>

- Click on Elements -> Fit Line at Subgroups
- Ensure that 'Linear' is selected as the <u>Fit Method</u>

If the lines are roughly straight, we conclude that the assumption of linearity is satisfied

Analyze -> General Linear Model -> Multivariate

IBM SPSS Statistics Data Editor

nalyze	<u>G</u> raphs	<u>U</u> tilities	Extensions	<u>W</u> indow	<u>H</u> elp	
Re <u>p</u> o	rts		•		A	
D <u>e</u> sc	riptive Statis	stics	•		1	
<u>B</u> ayes	sian Statisti	cs	•			
Ta <u>b</u> le	S		•	var	var	Va
Com	pare Means		•			
<u>G</u> ene	ral Linear N	lodel	•	🔛 Univaria	ate	
Gene	rali <u>z</u> ed Line	ar Models		Multivar	iate	
Mixed	Models		•	Repeat	ed Measure	S
<u>C</u> orre	late			Varianc	e Compone	ants
<u>R</u> egr	ession		•	vanane	e compone	
L <u>o</u> glii	near		•			
Neura	al Net <u>w</u> orks		•			
Class	si <u>f</u> y		•			
<u>D</u> ime	nsion Redu	iction	•			
Sc <u>a</u> le	1		•			
Nonp	arametric T	ests	•			
Fored	asting		•			

- Move 'Anxiety' and 'Fatigue' to <u>Dependent</u> <u>Variables</u>
- Move 'Condition' to <u>Fixed Factor(s)</u>

ta Multivariate			×
SerialNumber	•	Dependent Variables: Anxiety Fatigue	Model Co <u>n</u> trasts Plo <u>t</u> s
	•	Eixed Factor(s):	Post <u>H</u> oc <u>E</u> M Means <u>S</u> ave
	•	<u>C</u> ovariate(s):	Options Bootstrap
ОК	Paste	WLS Weight: Reset Cancel Help	

- Under <u>Options</u>, select *Homogeneity tests*
- Continue, and OK

Ţ	Multivariate: Options	×
	┌ Display	
	Descriptive statistics	Transformation matrix
	Estimates of effect size	✓ Homogeneity tests
	Observed power	Spread vs. level plot
	Parameter estimates	🔲 <u>R</u> esidual plot
	SCP matrices	Lack of fit
	Residual SSCP matrix	General estimable function
	Significance level: .05 Confident	ce intervals are 95.0 %
	Canc	el Help

In order to satisfy this assumption, the Box's M value should be *non-significant* at $\alpha = .001$

A significant value of .743 indicates that the _ assumption has not been violated

Box's Test of Equality of Covariance Matrices^a

Box's M	1.315
F	.413
df1	3
df2	259920.000
Sig.	.743

Tests the null hypothesis that the observed covariance matrices of the dependent variables are equal across groups.

> a. Design: Intercept + Condition

		Levene Statistic	df1	df2	Sig.
Anxiety	Based on Mean	.289	1	38	.594
	Based on Median	.543	1	38	.466
	Based on Median and with adjusted df	.543	1	36.954	.466
	Based on trimmed mean	.318	1	38	.576
Fatigue	Based on Mean	.033	1	38	.856
	Based on Median	.026	1	38	.873
	Based on Median and with adjusted df	.026	1	32.666	.873
	Based on trimmed mean	.006	1	38	.941

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a. Design: Intercept + Condition

Output shows Levene's Test of Equality of Error Variances, where a *non-significant* Levene Statistic at $\alpha = .05$ would indicate *equality* of variances

Finally... MANOVA

How to choose the multivariate test?

*Look at how to conduct MANOVA in Slide 22			Multivariate	Robustness						
			Test	Sample Size	Levels of IVs	Uneven Cell Sizes	Unequal variance	Non-normal Data	Collinearity	
Multivariate Tests		Pillai's	o "	0				Low to		
Effect		Value	F	Trace	Small	>2	Y	Y	Y	medium
Intercept	Pillai's Trace	.983	1101.405	Hace						
	Wilks' Lambda	.017	1101.405 ^b	Wilk's Lambda	Medium to large	>2	N	N	N	Low to medium
	Hotelling's Trace	59.535	1101.405 ^b							
	Roy's Largest Root	59.535	1101.40							
Condition -	Pillai's Trace	.593	26.961 ^b	Hotelling's Trace	Medium to large	= 2	Ν	N	N	Low to medium
	Wilks' Lambda	.407	26.961 ^b							
	Hotelling's Trace	1.457	26.961 ^b							
	Roy's Largest Root 1.457 26.961 ^b Roy's M	Medium	Medium to large > 2	N	Ν	N	Medium to			
a. Design: Intercept + Condition b. Exact statistic		Largest Root to larg					to large	high		

MANOVA

Multivariate Tests^a

Effect		Value	F	Hypothesis df	Error df	Sig.
Intercept	Pillai's Trace	.983	1101.405 ^b	2.000	37.000	.000
	Wilks' Lambda	.017	1101.405 ^b	2.000	37.000	.000
	Hotelling's Trace	59.535	1101.405 ^b	2.000	37.000	.000
	Roy's Largest Root	59.535	1101.405 ^b	2.000	37.000	.000
Condition	Pillai's Trace	.593	26.961 ^b	2.000	37.000	.000
	Wilks' Lambda	.407	26.961 ^b	2.000	37.000	.000
	Hotelling's Trace	1.457	26.961 ^b	2.000	37.000	.000
	Roy's Largest Root	1.457	26.961 ^b	2.000	37.000	.000

a. Design: Intercept + Condition

b. Exact statistic

Looking at Pillai's Trace, F(2,37) = 26.96, p < .001. There is a statistically significant difference in anxiety and fatigue across types of drinks.

MANOVA

Tests of Between-Subjects Effects

Source	Dependent Variable	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	Anxiety	50.625 ^a	1	50.625	53.811	.000
	Fatigue	2.025 ^b	1	2.025	1.284	.264
Intercept	Anxiety	1380.625	1	1380.625	1467.517	.000
	Fatigue	1199.025	1	1199.025	760.016	.000
Condition	Anxiety	50.625	1	50.625	53.811	.000
	Fatigue	2.025	1	2.025	1.284	.264
Error	Anxiety	35.750	38	.941		
	Fatigue	59.950	38	1.578		
Total	Anxiety	1467.000	40			
	Fatigue	1261.000	40			
Corrected Total	Anxiety	86.375	39			
	Fatigue	61.975	39			

To investigate the effects of each DV, look at the *Tests of Between-Subjects Effects table*

There is a main effect of drinks (coffee or water) on anxiety, p < .001, but not fatigue, p = .264

a. R Squared = .586 (Adjusted R Squared = .575)

b. R Squared = .033 (Adjusted R Squared = .007)

Something to note...

This example only contained 1 IV with 2 levels

If we had 3 levels (e.g., 1 cup coffee, 3 cups coffee, 1 cup water), we would have needed to conduct <u>a pairwise comparison test</u> to investigate which level of the IV significantly affected the DV?

This can be done by going to

-> Analyse -> General linear model -> Multivariate -> Post-Hoc -> Moving the IV to 'Post Hoc Tests for:' -> Selecting a preferred post hoc test (common test is Tukey)

Results Write-up

An example write-up can be found on page 167 in

Allen, P., Bennett, K., & Heritage, B. (2019). SPSS Statistics: A Practical Guide (4th ed.). Cengage Learning.

Any Questions?

learningcentre-singapore@jcu.edu.au

www.jcu.edu.sg