

# Mediation

Learning Centre



www.jcu.edu.sg

#### Content



What is mediation?

**2** Types of mediation models

**3** SPSS example using PROCESS Macro



#### What is mediation?

- Mediation occurs when a variable (MV) explains the relationship between an independent variable (IV) and a dependent variable (DV)
- In other words, the IV affects the MV, which in turn influences the DV
- For example, paying a higher salary (IV) leads to increased productivity (DV). However, upon further inspection, it was proposed that higher salary leads to higher morale, which then increases productivity.





#### What is mediation?

Typically, there are 5 key terms in mediation:

- 1) Path a relationship between IV and MV
- 2) Path b relationship between MV and DV while controlling for IV
- 3) Path c relationship between IV and DV (also known as total effect)
- 4) Path c' relationship between IV and DV while controlling for MV (direct effect)

5) Mediational effect – path a x path b (indirect effect)





#### **Mediational Designs**

- The mediational model shown in the previous slide is a single mediation design
- Other possible designs include multiple mediators, or sequential mediators
- Note that each design can have multiple paths a, b, c', but only 1 total effect (c)





#### Example

A company found that paying their employees better were associated with higher productivity. However, a manager pointed out that this could be due to the fact that better wages led to higher morale, which then led to higher productivity. In other words, do employees' morale mediate the relationship between salary and productivity?



#### **Location of SPSS Data Files**

#### Example SPSS data for practice are available on LearnJCU:

Log in to LearnJCU -> Organisations -> Learning Centre JCU Singapore -> Statistics Support -> Statistics Resources -> SPSS Data for Practice

#### Example



# This is what the conceptual diagram of the proposed mediation model looks like...





- We will be using the PROCESS macro (by Andrew Hayes) on SPSS to analyse the data
- PROCESS can be downloaded; instructions on installation can also be found in the downloaded file on LearnJCU: Log in to LearnJCU -> Organisations
   -> Learning Centre JCU Singapore -> Statistics Support -> Statistics Resources -> Install PROCESS



- Once installed, the macro can be found by going to...
- Analyze -> Regression -> PROCESS v4.2 by Andrew F. Hayes

Note that you should only have the latest version installed (v4.2 in this case) if this is your first time installing

| cs Dat | a Editor                              |                       |                   |            |                                 |              |             |     |  |  |  |  |
|--------|---------------------------------------|-----------------------|-------------------|------------|---------------------------------|--------------|-------------|-----|--|--|--|--|
| rm     | <u>A</u> nalyze                       | <u>G</u> raphs        | <u>U</u> tilities | Extensions | <u>W</u> indow                  | <u>H</u> elp |             |     |  |  |  |  |
|        | Po <u>w</u> er                        | r Analysis            |                   | >          |                                 |              |             | 0   |  |  |  |  |
|        | Repor                                 | ts                    |                   | >          |                                 |              |             |     |  |  |  |  |
|        | D <u>e</u> scr                        | iptive Stati          | stics             | >          | values                          | wissing      | Columns     | AI  |  |  |  |  |
|        | Bayes                                 | sian Statist          | ics               | >          |                                 |              |             |     |  |  |  |  |
|        | Ta <u>b</u> les                       | 5                     |                   | >          |                                 |              |             |     |  |  |  |  |
|        | Co <u>m</u> p                         | are Means             |                   | >          |                                 |              |             |     |  |  |  |  |
|        | <u>G</u> ener                         | ral Linear N          | lodel             | >          |                                 |              |             |     |  |  |  |  |
|        | Gener                                 | rali <u>z</u> ed Line | ar Models         | >          |                                 |              |             |     |  |  |  |  |
|        | Mi <u>x</u> ed                        | I Models              |                   | >          |                                 |              |             |     |  |  |  |  |
|        | <u>C</u> orrel                        | ate                   |                   | >          |                                 |              |             |     |  |  |  |  |
|        | <u>R</u> egre                         | ssion                 |                   | >          | Automati                        | c Linear Mod | eling       |     |  |  |  |  |
|        | L <u>og</u> lin                       | ear                   |                   | >          | Linear                          |              |             | -   |  |  |  |  |
|        | Class                                 | i <u>f</u> y          |                   | >          | Curve Estimation                |              |             |     |  |  |  |  |
|        | Dimension Reduction<br>Sc <u>a</u> le |                       |                   | >          |                                 | S v/ 2 by Ar | drow E. Hay | 100 |  |  |  |  |
|        |                                       |                       |                   | >          | > Deticil cost Cruces           |              |             |     |  |  |  |  |
|        | <u>N</u> onpa                         | arametric T           | ests              | >          | Martial Least Squares           |              |             |     |  |  |  |  |
|        | Forecas <u>t</u> ing                  |                       |                   | >          | PROCESS v4.0 by Andrew F. Hayes |              |             |     |  |  |  |  |
|        | <u>S</u> urviv                        | al                    |                   | >          | PROCESS v3.5 by Andrew F. Hayes |              |             |     |  |  |  |  |
|        | M <u>u</u> ltip                       | le Respon             | se                | >          | 📕 Binary Logistic               |              |             |     |  |  |  |  |
|        | 🟭 Missin                              | ng <u>V</u> alue Ai   | nalysis           |            | Real Multinom                   | ial Logistic |             | -   |  |  |  |  |
|        | Multin                                | la Imputati           | 0.0               | >          |                                 |              |             |     |  |  |  |  |



- Select 'Salary' as X variable, 'Product' as Y variable, and 'Morale' as mediating variable
- Change model number to 4 (this is the model for single mediator)
- The templates for the model numbers are available in Appendix A of the Hayes' text







- Under *options*, select 'Show total effects model'
- Continue, and OK

| ROCESS options                                                                                                                                                                                                                                                                                                                                                         | ×                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Show covariance matrix of regression coefficients</li> <li>Generate code for visualizing interactions</li> <li>Show total effect model (only models 4, 6, 80, 81, 82)</li> <li>Pairwise contrasts of indirect effects</li> <li>Standardized effects (mediation-only models)</li> <li>Test for X by M interaction(s)</li> <li>Residual correlations</li> </ul> | Heteroscedasticity-consistent inference None Decimal places in output 4  Mean center for construction of products  No centering All variables that define products Only continuous variables that define products |
| Many options available in PROCESS through command<br>syntax are not available through this dialog box. See<br>Appendices A and B of http://www.guilford.com/p/hayes3                                                                                                                                                                                                   | Moderation and conditioning<br>Probe interactions<br>if p < .10<br>Conditioning values<br>I foth, 50th, 84th percentiles<br>-1SD, Mean, +1SD<br>Johnson-Neyman output                                             |
| Continue                                                                                                                                                                                                                                                                                                                                                               | Cancel                                                                                                                                                                                                            |







| Note that in the<br>next part of the                                     | OUTCOME V<br>Product<br>Model Sum     | VARIABLE:<br>nmary<br>R R-sq<br>766 .4578 | MSE<br>160.3304                               | F<br>15.6232                               | df1<br>2.0000                | df2<br>37.0000                    | р<br>.0000                         | Salary is not a significant<br>predictor of Productivity<br>when controlling for<br>Morale, $B = .006$ , $p = .18$<br>(this is path c') |
|--------------------------------------------------------------------------|---------------------------------------|-------------------------------------------|-----------------------------------------------|--------------------------------------------|------------------------------|-----------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| variable is now<br>' <i>Product</i> '                                    | Model<br>constant<br>Salary<br>Morale | coeff<br>19.7487<br>.0060<br>5.3483       | se<br>12.6103<br>.0044<br>1.7604              | t<br>1.5661<br>1.3581<br>3.0381            | P<br>.1258<br>.1826<br>.0043 | LLCI<br>-5.8025<br>0030<br>1.7813 | ULCI<br>45.2999<br>.0150<br>8.9152 | When the effect of<br>morale is accounted for,<br>salary no longer predicts                                                             |
| Shows the model<br>summary, $R^2 = .46$ ,<br>F(2, 37) = 15.62, $p< .001$ |                                       | Morale pr<br>after cont<br>p = .004.7     | edicts pro<br>rolling for<br><b>This is p</b> | oductivity<br>r salary, <i>l</i><br>oath b | / even<br>B = 5.35           | ,                                 |                                    | compared to path a in<br>previous slide).<br>This suggests that<br>morale is a mediator of                                              |

tor of

the relationship between salary and productivity



Note that outcome variable is still *productivity* 

The indirect effect (path a x path b) is .009, and the 95% confidence interval is between .0035 to .0154

If the confidence interval <u>excludes 0</u>, we say that the MV mediates the IV-DV relationship

This is also the primary way to telling if mediation occurs

| Product<br>Model Summan                                                                | .y                                                                                                    |                                                             |                                     |                                       |                                | /          |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------|---------------------------------------|--------------------------------|------------|
| R<br>.5680                                                                             | R-sq<br>.3226                                                                                         | MSE<br>195.0554                                             | F<br>18.0967                        | dfl<br>1.0000                         | df2<br>38.0000                 | р<br>.0001 |
| Model                                                                                  | coeff                                                                                                 | se                                                          | t                                   | q                                     | <b>LTCI</b>                    | ULCI       |
| constant                                                                               | 7.9971                                                                                                | 13.2385                                                     | .6041                               | .5494 -                               | 18.8032                        | 34.7974    |
| Salarv                                                                                 | .0152                                                                                                 | .0036                                                       | 4.2540                              | .0001                                 | .0079                          | .0224      |
| ******                                                                                 | ** TOTAL, I                                                                                           | DIRECT, AND                                                 | INDIRECT EF                         | FECTS OF X (                          | ON Y *****                     | ****       |
| Total effect<br>Effect<br>.0152                                                        | ** TOTAL, I<br>; of X on Y<br>se<br>.0036                                                             | DIRECT, AND<br>t<br>4.2540                                  | INDIRECT EF                         | FECTS OF X (<br>LLCI<br>.0079         | ON Y *****<br>ULCI<br>.0224    | *****      |
| Total effect<br>Effect<br>.0152<br>Direct effect                                       | tof X on Y<br>cof X on Y<br>se<br>.0036<br>ct of X on Y                                               | DIRECT, AND<br>t<br>4.2540                                  | INDIRECT EFF                        | FECTS OF X (<br>LLCI<br>.0079         | ULCI<br>.0224                  | *****      |
| Total effect<br>Effect<br>.0152<br>Direct effec<br>Effect<br>.0060                     | tof X on Y<br>se<br>.0036<br>tof X on Y<br>se<br>.0044                                                | DIRECT, AND<br>t<br>4.2540<br>4<br>t<br>1.3581              | INDIRECT EFF<br>.0001<br>p<br>.1826 | LLCI<br>.0079<br>LLCI<br>0030         | ULCI<br>.0224<br>ULCI<br>.0150 | *****      |
| ***********<br>Total effect<br>Effect<br>0152<br>Direct effect<br>0060<br>Indirect eff | *** TOTAL, 1<br>c of X on Y<br>se<br>.0036<br>ct of X on S<br>se<br>.0044<br>Sect(s) of S<br>cffect I | t<br>4.2540<br>4<br>t<br>1.3581<br>4<br>on Y:<br>BootSE Boo | INDIRECT EFF<br>.0001<br>p<br>.1826 | LLCI<br>LLCI<br>.0079<br>LLCI<br>0030 | ULCI<br>.0224<br>ULCI<br>.0150 | *****      |

Model summary,  $R^2 = .32$ , F(1, 38) = 18.10, p < .001

Salary is positively associated with productivity, B = .02, *p* < .001 **(this is path c)** 

Note that values of total effect (path c) is the same as shown above (Total effect model)

Values of direct effect (path c') is also is the same as shown in the previous slide



## **Statistical Diagram of Example**

Based on the analysis, this is how our single mediation statistical diagram looks like..



\* *p* < .05, \*\* *p* < .001

#### Write-up



#### An example write-up can be found on page 213 in

#### Allen, P., Bennett, K., & Heritage, B. (2019). SPSS Statistics: A Practical Guide (4th ed.). Cengage Learning.



# **Questions?**

## learningcentre-singapore@jcu.edu.au



www.jcu.edu.sg