

t-tests

Learning Centre

www.jcu.edu.sg

Content

1 T-test What is a *t*-test?

2 Types of *t*-tests Spoiler alert: There are 3!

B SPSS examples How to run *t*-tests on SPSS

Reporting

How to report results from SPSS output

JAMES COOK UNIVERSITY SINGAPORE

What is a *t*-test?

A statistical analysis that tells us whether the difference between 2 groups happened by chance Measured using mean scores of the 2 groups, standard deviations, and a number of data points (but SPSS does the calculations for us!) സ്രീ

Annotated by *t* statistics, which can be positive or negative

Types of *t***-tests**

1. One Sample *t*-test

A one sample *t*-test is used if we want to know whether a sample mean is different from a known population mean

Example

In my statistics class of 20 young adults, we could see that we were all quite tall. We then thought to ourselves: "Hmm, are we really taller than the average population?"

We then searched the Internet for census data on the height of young adults in Singapore, and at the same time measured the height of everyone in my class.

Are we really taller?

Location of SPSS Data Files

Example SPSS data for practice are available on LearnJCU:

Log in to LearnJCU -> Organisations -> Learning Centre JCU Singapore -> Statistics Support -> Statistics Resources -> SPSS Data for Practice

Before conducting the t-test, we need to first make sure that our data is normally distributed (**assumption of normality**)...

1. Analyze -> Explore

- 2. Move 'Height' to Dependent List
- 3. Click on *Plots*, select 'Normality plots with tests'
- 4. Continue, and OK

Kolmogorov-Smirnov ^a				Shapiro-Wilk			
	Statistic df Sig.		Statistic	df	Sig.		
Height	.124	20	.200	.944	20	.282	

Tests of Normality

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Since the Shapiro-Wilk *p* value is > .05, we conclude that assumption of normality is not violated

Analyze -> Compare Means -> One-Sample T Test

tatistics [Data Editor							
nalyze	<u>G</u> raphs	<u>U</u> tilities	E <u>x</u> tensions	<u>W</u> indow	<u>H</u> elp			
Repor	ts		•					
D <u>e</u> scr	iptive Statis	stics	•					
<u>B</u> ayes	ian Statisti	CS	•					
Ta <u>b</u> le:	s		•	va	ır	var	var	
Co <u>m</u> p	are Means		•	Means				_
<u>G</u> ener	al Linear N	lodel	•	🚺 One- <u>S</u> an	nple T	Test		_
Gener	ali <u>z</u> ed Line	ar Models	•	Independ	dent-S	amples T Tes	t	_
Mi <u>x</u> ed	Models		•	Summar	- v Inde	nendent-Sami	oles T Test	_
<u>C</u> orrel	late		•	Dairod S	ample	e T Toet		_
<u>R</u> egre	ssion		•	E aneu-s	ampie	s i rest		_
L <u>og</u> lin	ear		•	one-Way	ANO\	/A		
Neura	I Networks		•					

- Move 'Height' as the Test Variable
- Enter the 'Test Value', which is <u>the census</u> <u>data</u> we found on the Internet (171 cm.)
- OK!

Write-up

An example write-up is available on:

JCUS Learning Centre website -> Statistics and Mathematics Support

Types of *t***-tests**

2. Between Subjects t-test

Also known as independent samples *t*-test, it is used to compare groups which are not related (i.e., independent)

Example

A researcher wanted to find out if there is a difference in time spent on social media between males and females. She hypothesised that females spend more time a day on social media, compared to males. The researcher collected data from 25 males and 25 females

Do females spend more time in a day on social media compared to males?

Before conducting the *t*-test, we need to first test the <u>assumption of normality</u>

<u>A</u> nalyze	<u>G</u> raphs	<u>U</u> tilities	E <u>x</u> tensions	<u>W</u> indow	<u>H</u> elp			
Repo	rts		•					
D <u>e</u> scr	iptive Stati	stics	•	123 Frequencies				
<u>B</u> ayes	ian Statist	ics	•	bescript	tives			
Ta <u>b</u> le	s		•	A Explore.				
Co <u>m</u> p	are Means	5	•	Crossta	hs			
<u>G</u> enei	ral Linear N	lodel	•	Dotio				
Gene	rali <u>z</u> ed Line	ear Models	•					
Mi <u>x</u> ed	Models		•	P-P Plots				
<u>C</u> orre	late		•	🛃 <u>Q</u> -Q Plot	ts			
<u>R</u> egre	ssion		•					
L <u>o</u> glin	lear		•					
Neura	il Net <u>w</u> orks	3	•					
Class	i <u>f</u> y		•					
<u>D</u> ime	nsion Red	uction	•					
Sc <u>a</u> le			•					
Nonp	arametric 1	Tests	•					

1. Analyze -> Explore

- Move 'HoursOnSocialMedia' to Dependent List, and 'Gender' to Factor List
- 3. Click on *Plots*, select 'Normality plots with tests'
- 4. Continue, and OK

Explore	×
SerialNumber	Dependent List Statistics
	Eactor List Gender <u>Dytions</u> Bootstrap
	Label <u>C</u> ases by:
Display ● <u>B</u> oth ◎ St <u>a</u> tistics ◎ F	Plots
OK P	aste Reset Cancel Help
Boxplots Boxplots Eactor leve Dependen None	ts X als together ts together
Normality pl	lots with tests
Spread vs Le Non <u>e</u>	vel with Levene Test
© <u>P</u> ower est	imation
© <u>T</u> ransform © <u>U</u> ntransfor	rmed
Contin	ue Cancel Help

	-							
		Kolm	ogorov-Smir	nov ^a	5	Shapiro-Wilk		
	Gender	Statistic	df	Sig.	Statistic	df	Sig.	
HoursOnSocialMedia	Female	.141	25	.200	.965	25	.529	
	Male	.193	25	.017	.946	25	.208	J

Tests of Normality

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Since the Shapiro-Wilk *p* values are both > .05, we conclude that assumption of normality is not violated

- Analyze -> Compare Means -> Independent Samples T Test
- Move 'HoursOnSocialMedia' to the right column as the Test Variable
- Select 'Gender' as the Grouping Variable

🚡 Independent-Samples T Test 🛛 🗙	🔚 Independent-Samples T Test	\times
SerialNumber ✓ ✓ HoursOnSocialMedia Bootstrap	Image: Serial Number Image: Serial Number Image: Seria	ns rap
OK Paste Reset Cancel Help	OK Paste Reset Cancel Help	

- Click on *Define Groups*
- Since female is coded as '1', and male as '2', type in '1' and '2' under groups 1 and 2, respectively (you can switch them around if you wish)
- Click continue, and OK!

Write-up

An example write-up is available on:

JCUS Learning Centre website -> Statistics and Mathematics Support

Types of *t***-tests**

3. Within Subjects t-test

Also known as paired samples *t*-test, it is used to compare groups which are related (e.g., same person; before and after a treatment)

Example

A number of students failed their statistics module last semester. To help them, the Learning Advisors invited these students to attend remedial classes throughout the current semester.

To evaluate the effectiveness of the classes, the learning advisors analysed the overall grades of all students who attended the lessons, and compared them to their grades during the last semester.

Did the remedial classes improve students' grades?

Q

Before conducting the *t*-test, we need to first test the <u>assumption of normality for 3 variables</u>: pre-remedial, post-remedial, and also the difference score between the 2 variables

To calculate the difference, we use the *Compute Variable* function

- 1. Transform -> Compute Variable
- 2. Enter 'difference' as Target Variable
- 3. Select 'PostRemedial' and move it to Numeric Expression
- 4. Click the minus (-) in the numpad
- 5. Select 'PreRemedial' and move it to Numeric Expression
- 6. We are basically calculating the difference of before and after scores

	<u>T</u> ransform	<u>A</u> nalyze	<u>G</u> raphs	<u>U</u> tilities	E <u>x</u> te		
	Compute	Variable					
	🔀 C <u>o</u> unt Va	lues within	Cases				
	Shi <u>f</u> t Valu	ies					
Compute Variable							×
arget Variable: ifference Type & Label	= PostReme	xpression: dial - PreReme	dial				
PreRemedial PostRemedial		< > = >= & 1 ~ ()	7 8 9 4 5 6 1 2 3 0 . Delete		Function <u>c</u> All Arithmetic CDF & Nc Conversio Current D Date Arith Date Crea Eunctions	roup: ; ncentral CDF n late/Time ation ation and Special Variable	s:
If (optional case selectio	n condition)						
	ОК	Paste Res	set Cancel	Help			_

SerialNu mber	PreReme dial	PostRem edial	ofference 🔗
1	45	40	5.00
2	40	60	-20.00
3	48	55	-7.00
4	34	70	-36.00
5	47	69	-22.00
6	48	53	-5.00
7	49	54	-5.00
8	45	48	-3.00
9	40	55	-15.00
10	36	67	-31.00
11	37	49	-12.00
12	49	68	-19.00
13	45	69	-24.00
14	44	71	-27.00
15	46	51	-5.00
16	46	53	-7.00
17	39	40	-1.00
18	42	55	-13.00
19	44	60	-16.00
20	49	65	-16.00

SPSS will create a new column

nalyze	<u>G</u> raphs	<u>U</u> tilities	E <u>x</u> tensions	<u>W</u> indow	<u>H</u> elp
Repo	rts		•		
D <u>e</u> sci	iptive Stati:	stics	•	123 <u>F</u> requen	cies
<u>B</u> ayes	ian Statisti	cs	•	Descript	tives
Ta <u>b</u> le	s		•	A Explore.	
Co <u>m</u> p	are Means	;	•	Crossta	hs
<u>G</u> ene	ral Linear N	lodel	•	Ratio	
Gene	rali <u>z</u> ed Line	ear Models	•		_
Mi <u>x</u> ed	Models		•	<u>P</u> -P Plot	S
<u>C</u> orre	late		•	🛃 <u>Q</u> -Q Plot	IS
<u>R</u> egre	ession		•		
L <u>o</u> glin	lear		•		
Neura	al Net <u>w</u> orks	:	•		
Class	i <u>f</u> y		•		
<u>D</u> ime	nsion Redu	uction	•		
Sc <u>a</u> le			•		
<u>N</u> onp:	arametric T	ests	•		

To conduct the normality tests:

- 1. Analyze -> Explore
- Move 'PreRemedial', 'PostRemedial', and 'difference' to Dependent List
- 3. Click on *Plots*, select 'Normality plots with tests'
- 4. Continue, and OK

Explore 🕼			×
SerialNun	ıber	Dependent List Prerkemedial difference Eactor List Label Cases by:	Statistics Plojs Options Bootstrap
⊡Display <u> </u> Both © S	tatistics © Plots	Reset Cancel Help	
	Explore: Plots Boxplots Ecorrelevels tog Dependents tog None	Descriptive getther Histogram	×
	 Normality plots w Spread vs Level wi None Power estimation Transformed P Untransformed 	rith tests th Levene Test on ower: Natural log 🔹	

Cancel

Continue

Help

	Kolm	ogorov-Smir	nov ^a	Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.	
PreRemedial	.180	20	.087	.915	20	.081	
PostRemedial	.156	20	.200	.929	20	.151	
difference	.142	20	.200	.977	20	.894	

Tests of Normality

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Since the Shapiro-Wilk *p* values are all > .05, we conclude that assumption of normality is not violated

Analyze -> Compare Means -> Paired-Samples T Test

ata Editor								
Analyze	<u>G</u> raphs	<u>U</u> tilities	E <u>x</u> tensions	<u>W</u> indo	w	<u>H</u> elp		
Re <u>p</u> or	ts		•			A		
D <u>e</u> scr	iptive Statis	stics	•			1		<u>'</u>
<u>B</u> ayes	ian Statisti	cs	•					
Ta <u>b</u> le:	5		•	var	,	var	var	
Co <u>m</u> p	are Means		•	M <u>M</u> ear	ns			
<u>G</u> ener	al Linear N	lodel	•	1 One	- <u>S</u> am	iple T Te	st	
Gener	ali <u>z</u> ed Line	ar Models	•	🔠 Inde	_ pend	ent-Sam	ples T Test	
Mi <u>x</u> ed	Models		•	Pair	ed-Se	mnlee 1	r Taet	
<u>C</u> orrel	ate		•		Wey		1000	
<u>R</u> egre	ssion		*	<u>o</u> ne-	-way	ANOVA		

х

Onto SPSS!

- Select both 'PreRemedial' and • 'PostRemedial' and move them over to the right column (you can hold the *ctrl* key to select multiple variables)
- 🕋 Paired-Samples T Test Paired Variables: Options.. Pair Variable2 SerialNumber Variable1 Bootstrap. N [PreRe... 🧳 (PostRe.. PreRemedial 1 2 PostRemedial + 4 ¥ \leftrightarrow OK Paste Reset Cancel Help

OK!

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	PreRemedial	43.65	20	4.580	1.024
	PostRemedial	57.60	20	9.627	2.153

We can say that, on average, students who underwent remedial classes improved their grades from 43.65 to 57.60 (check *p* value for statistical significance) *p*-value < .001 (smaller than the critical alpha .05). We reject the null hypothesis. Therefore, we conclude that scores before and after remedial lessons were significantly different.

Write-up

An example write-up can be found on:

JCUS Learning Centre website -> Statistics and Mathematics Support

Questions?

learningcentre-singapore@jcu.edu.au

www.jcu.edu.sg