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What is Multiple Regression?

• Multiple Regression (MR) is a statistical analysis used to 
examine the relationship between multiple independent 
variables (IVs), and a dependent variable (DV)

• The IVs are also known as predictor variables, while the DV is 
also called the criterion variable

• In other words, a multiple regression answers the question: 
which IVs predict the DV?

• However, MR cannot always imply causation



Standard Multiple 
Regression (SMR)

Example
A researcher is interested in 
finding out if scores from 3 
different assignments can 
predict final exam scores

The researcher then invited 30 
participants who had enrolled 
into a module last semester to 
complete a survey asking for:

1) Scores from each assignment
2) Score from the final exam

*In SMR, all IVs are placed into the 
model at the same time!

**The sample size of 30 was used 
only for illustration purposes; an 

actual study would require a larger 
sample size!

Data credit 

https://college.cengage.com/mathematics/brase/understand

able_statistics/7e/students/datasets/mlr/frames/frame.html



Location of SPSS Data Files

Example SPSS data for practice are available on LearnJCU:

Log in to LearnJCU -> Organisations -> Learning Centre JCU Singapore ->
Statistics Support -> Statistics Resources -> SPSS Data for Practice



Univariate Outliers

Multivariate Outliers

Normality

Cases with extreme values on single variables

Cases with extreme values on multiple variables

Ensuring that the data is normally distributed

Assumptions Testing

01

02

03

Ensuring that the differences between observed and predicted values of 
the DV are normally distributed

04 Normality, Linearity, Homoscedasticity of Residuals

Ensuring that none of the predictor variables are too correlated
05 Multicollinearity



One way to test this 
assumption is to use Cook’s 
distances

• Go to Analyze -> 
Regression -> Linear

1. Univariate Outliers



• Move ‘FinalExam’ 
into Dependent, and 
the 3 assignments 
into Independent(s)

• Click on ‘Save’

1. Univariate Outliers



• Select Cook’s
• Click continue

1. Univariate Outliers



Note that by selecting 
Cook’s Distance, SPSS 

will create a new 
variable for it in your 

dataset

1. Univariate Outliers



Look at the maximum
Cook’s Distance

• If it is less than 1, 
there is no univariate 
outlier

1. Univariate Outliers



Multivariate outliers are identified 
using Mahalonobis Distances

Follow the same steps as univariate 
outliers… except this time, select the 
Mahalanobis

As mentioned before, selecting this 
option creates a new variable in the 
dataset

2. Multivariate Outliers



Look at the maximum
Mahalanobis Distance 

The maximum value 
should be lesser than the 
critical Chi-square value 
(from the Chi-square 
table)

2. Multivariate Outliers



• Our degrees of freedom (df) is 3 (df is a number of IVs), and the alpha is 
set at .001, giving us a critical value of 16.266

• Since the observed maximum mahalanobis distance is 5.64, which is 
smaller than 16.266, there is no multivariate outlier 

You can easily find this table on the Internet!

2. Multivariate Outliers



Hmmm…but how to deal with
outliers or extreme values if any?

1. Re-check your data entry. Check if they are measurement 
errors (e.g., out-of-range values). Before re-running all tests of 
assumptions:

• Correct the errors
• Leave the errors as missing
• Remove the observation with the errors
• Replace the errors/wrong values with e.g., mean, the 

largest valid value, or multiple implication
2. For genuine outliers, consider keeping or removing



Dealing with outliers or extreme values

1. If you want to keep outliers (okay for simple 
regression):
• Transform the DV, or
• Run the linear regression with and without the 

outlier. If there are no appreciable differences in the 
results, then keep the outlier and report

2. Consider removing genuine extreme values. 



To test the assumption of 
normality, we can use the 
Shapiro-Wilk test

• Go to Analyze -> Descriptive 
Statistics -> Explore 

3. Normality



• Click on Plots

• Select Normality plots 
with tests

• Continue and OK!

3. Normality



• We focus on the Sig. value of the Shapiro-Wilk test of the DV. To assume the 
normality, we are looking for a non-significant Shapiro-Wilk statistic (p > .05)

• Hence, in this example, we conclude that the assumption of normality was met

3. Normality



4. Normality, Homoscedasticity of Residuals, and 
Linearity

Go to Analyze -> Regression -> Linear 
-> Plots

• Move ‘ZRESID’ into Y

• Move ‘ZPRED’ into X

• Select ‘Normal probability plot’

• Continue, and OK!



• For the upper chart, if the data points are aligned 
with the diagonal straight line, the residuals are 
normally distributed.

• For the bottom chart, we are looking for equal 
spreading of data points across the X axis

• Taken together, if both charts look like the ones 
we have on the right, we conclude that the 
assumptions for normality and homoscedasticity 
of residuals are not violated.

4. Normality, Homoscedasticity of Residuals, and 
Linearity



The assumption of linearity can be checked by 
conducting a Pearson’s correlation analysis or 

graph a scatterplot.

*Check out how to run correlation analysis in the 
Correlation slides (JCUS Learning Centre website -> 

Statistics and Mathematics Support)

4. Normality, Homoscedasticity of Residuals, and 
Linearity



5. Multicollinearity

Analyze -> Regression -> Linear 
-> Statistics

• Select Estimates and Model 
fit

• Select Collinearity 
diagnostics

• Continue, and OK!

*SMR is also conducted using these steps



To determine if there is multicollinearity among IVs, look at the Tolerance and VIF.

Tolerance should be > .1, and VIF should be below 10.

In this example, the assumption for multicollinearity has not been violated.

5. Multicollinearity



Standard Multiple Regression (SMR)

Assignment 1 has a p value of .961, while 
Assignments 2 and 3 both have p values of < 

.001. We then conclude that only 
Assignments 2 and 3 are significant 

predictors of final exam scores

Coefficients tell us which is a ‘better’ 
predictor. Assignment 3 has the 

highest value, thus it can be taken as 
the ‘best’ predictor.

*Look at how to 

conduct SMR in 

Slide 22



Results Write-up

An example write-up can be found on page 198 in

Allen, P., Bennett, K., & Heritage, B. (2019). SPSS 

Statistics: A Practical Guide (4th ed.). Cengage 

Learning. 



Building on example 1, the researcher thinks 
that other than the 3 assignments that could 
predict exam scores, sleep could also affect how 
well a student performs.

To find out the sole effect of assignments on 
exam scores, he controlled for this new variable 
‘sleeping hours’.

The researcher asks the 30 participants from 
Example 1 to also provide an average of how 
many hours of sleep they get in a night.

In HMR, IVs are added into 
the model cumulatively! It is 
commonly used to account 

for control variables.

Hierarchical 
Multiple Regression 

(HMR)

Example



Hierarchical Multiple Regression (HMR)

Before we begin, note that assumption testing 
has to be conducted! (look at Example 1)

• To conduct a HMR: Go to Analyze -> 
Regression -> Linear

• Move ‘FinalExam’ into Dependent, and 
‘HoursSlept’ into Independent(s) (*controlled 
variables are added in the first block!)

• Then click Next to create another block (see 
picture) to input our 3 assignments



We should now see that it is at 
block 2 of 2

• Move the main predictors 
(Assignments 1 - 3) into 
Independent(s)

Hierarchical Multiple Regression (HMR)



• Click on Statistics

• Select Estimates, Model fit, 
and R squared change

• Continue, and OK!

Hierarchical Multiple Regression (HMR)



This table shows us the order in which we entered the variables.

In block 1 (Model 1), we input HoursSlept
In block 2 (Model 2), we entered Assignments 1 – 3.

Output



In model 1, a number of 
sleeping hours contributed to 

17% of variability in exam 
scores, F(1, 28) = 5.52, p = .026

In model 2, the addition of our 3 
predictors resulted in an R squared 
change of .81, ΔF(3, 25) = 313.88, p < 
.001. Model 2 accounted for 98% of 

variability in exam scores

Output



Looking at the individual variables, Assignments 2 and 3 are significant 
predictors of exam scores 

Also, notice the change from model 1 to 2. After the addition of the main predictors, the p
value of sleeping hours had changed from .026 to .853

Output



An example write-up can be found on page 204 in

Allen, P., Bennett, K., & Heritage, B. (2019). SPSS 

Statistics: A Practical Guide (4th ed.). Cengage 

Learning. 

Results Write-up



Any Questions?

learningcentre-singapore@jcu.edu.au


