

Learning Centre

Factor Analysis

Brisbane | Cairns | Singapore | Townsville

Content

Types of factor analysis

Steps in conducting a factor analysis

Worked example

What is factor analysis

Factor analysis is a data reduction technique

Associate and group variables into factors

Consider the Big Five personality test:

How did researchers arrive at the 5 factors, from thousands of individual items and questions?

Factor analysis helped cluster those items into the 5 personality factors that we know today, while also identifying redundant items

Types of Factor Analyses

2 main branches: exploratory factor analysis (EFA) and confirmatory factor analysis (CFA)

We will only focus on EFA

Typically used in earlier stages of research, no concrete expectations of underlying factor structure

Thus, the number of factors will be determined by the data

~	
~	
 ✓ — 	
 ✓ 	

For example:

A questionnaire of 100 items subjected to EFA suggested 70 redundant items

From the remaining 30 items, they loaded onto 3 factors, suggesting a 3-factor structure, with 10 items each

EFA is also separated into different factor extraction types, with the more common ones being **Principal Axis Factoring (PAF)** and **Principal Component Analysis (PCA)**

PAF uses common variance to generate a factor solution, while PCA looks at total variance

- Next, data is usually rotated after factor extraction
- This is done by rotating factor axes to best produce a simple structure
- This makes the factors easier to distinguish from one another
 - E.g., items on the Big Five measuring extraversion are clearly distinct from items measuring agreeableness
 - No item should be measuring both extraversion and agreeableness (complex structure)

There are 2 common types of rotations:

- **Orthogonal** \rightarrow assume factors are not correlated
 - Methods include Varimax, Equamax, Quartimax
- Oblique \rightarrow assume factors are correlated
 - Methods include Direct Oblimin, Promax

Steps in Conducting Factor Analysis

Assess suitability of data to be subjected to factor analysis

Select factor extraction method (e.g., PCA, PAF)

Select rotation method (e.g., Varimax, Promax)

Interpreting the factor structure

An Example...

A team of researchers wants to develop a questionnaire that measures the characteristics of statistics teachers. They thought of 10 valid questions that is supposed to assess said characteristics, and sent the survey out to 300 students. After collecting the responses, they then carried out an exploratory factor analysis...

Location of the SPSS Data File for Practice

Example SPSS data for practice are available on LearnJCU:

Log in to LearnJCU -> Organisations -> Learning Centre JCU Singapore -> Statistics Support -> Statistics Resources -> SPSS Data for Practice

Before we begin...

The following slides will go through each step of the factor analysis procedure separately for an explanation purpose, but they can be conducted together in a single step

Assessing Suitability of Data

Kaiser-Meyer-Olkin (KMO) for sampling adequacy (this indicates the proportion of variance that is explained by underlying factors)

Barlett's Test for Sphericity (this indicates if items are related)

3

Anti-image matrices to further evaluate suitability of the data

Analyze → Dimension Reduction → Factor...

- KMO: A measure of sampling adequacy (MSA) measuring if the data are suitable for factor analysis. It indicates how much each item is predicted by the other items in the data
- **Bartlett's test:** A measure of overall correlation between the items. Items should be significantly correlated with each other for factor analysis

<u>A</u> nalyz	e <u>G</u> raphs	<u>U</u> tilities	E <u>x</u> tensions	<u>W</u> indow	<u>H</u> elp	
R	e <u>p</u> orts		•			
D	escriptive Statis	stics	•		1	
Ba	ayesian Statisti	cs	•			
Та	a <u>b</u> les		•	🛷 qn5	🛷 qn6	🛷 qn
C	o <u>m</u> pare Means		•			
G	eneral Linear N	lodel	•	4	1	
Ge	enerali <u>z</u> ed Line	ar Models	•	1	5	
Mi	i <u>x</u> ed Models		•	4	3	
<u>C</u> (orrelate		•	4	۱ د	
<u>R</u> (egression		•	2	2	
L <u>o</u>	glinear		•	4	4	
Ne	eural Net <u>w</u> orks		•	3	4	
CI	lassi <u>f</u> y		•	3	. 1	
Di	imension Redu	uction	۱. F	🔏 Eactor		
So	c <u>a</u> le		•	Corresp	ondence Analy	sis
<u>N</u> (onparametric T	ests	•	Optimal	Scaling	
Fo	precasting		•	 	2	
<u>S</u> u	urvival		•	4	2	
M <u>ı</u>	<u>u</u> ltiple Respon	se	•	3	2	
ジ Mi	ssing Value An	alysis		1	2	
Mu	ul <u>t</u> iple Imputati	on	•	2	1	
C	omp <u>l</u> ex Sample	es	•	2	3	
🖶 S <u>i</u> r	mulation			1	1	
<u>Q</u> ı	uality Control		•	4	2	
R	DC Curve			4	1	
Sp	patial and Tem	poral Model	ing 🕨	3	2	
Di	irect Marketing		•	1	4	

 Select all the items (except SerialNum) and shift them under Variables

🔹 Factor Analysis: Descriptives 🛛 🗙
Statistics
Correlation Matrix Coefficients Inverse Significance levels Reproduced Determinant Anti-image KMO and Bartlett's test of sphericity
Continue Cancel Help

- Ensure that KMO and Bartlett's test of sphericity, and Anti-image are selected
- (Optional) Coefficients can be selected to assess bivariate correlations between variables (if most of the correlations are small i.e., less than .3, it suggests that there is *no underlying structure*
- Continue, and OK

KMO and Bartlett's Test

Based on $\alpha = .05$, the test statistic is significant at p < .001. This suggests that the data is suitable for factor analysis; there are correlations between all the items due to possible underlying factors

The KMO value is .796; these data are suitable for factor analysis. Generally, a value of >.6 is considered acceptable to conduct factor analysis

Anti-Image Matrices

٠

a. Measures of Sampling Adequacy(MSA)

• On the off-diagonal, the negatives of the partial correlation coefficients of all the items indicate parts of the items that cannot be predicted.

On the diagonal, measure of sampling adequacy (MSAs) indicate

Extracting Factors

- Analyze → Dimension Reduction → Factor
 → Extraction
- Select 'Principal axis factoring' or 'Principal component analysis' as a Method
- Select Scree plot if you want to determine a number of extracted factors using a visual method
- Continue, and OK

Extracting Factors

Any factor with
eigenvalues > 1 will
be retained. In this
case, there are 2.

		То	tal Variance E	xplained		
		Initial Eigenvalu	es	Extraction	n Sums of Square	ed Loadings
Factor	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	3.112	28.294	28.294	2.645	24.047	24.047
2	2.814	25.581	53.874	2.245	20.413	44.460
3	.858	7.796	61.670			
4	.832	7.565	69.235			
5	.760	6.912	76.147			
6	.554	5.032	81.179			
7	.507	4.605	85.784			
8	.481	4.372	90.156			
9	.430	3.909	94.065			
10	.388	3.523	97.588			
11	.265	2.412	100.000			

Extraction Method: Principal Axis Factoring.

This shows the percentage of variance explained by each factor, as well as the cumulative percentage. The 2 factors extracted explained 44.46% of total variance.

Extraction Via Scree Plot

- The number of factors to be extracted is based on the inflexion point (point where the graph drops off drastically) and subtracting 1 from that point
- This scree plot suggests either a 1 or 2 factor solution

Extracting Factors

- We decide to stick to the two-factor solution provided by SPSS
- The factor matrix shows the correlations between items and the 2 factors BEFORE rotation

	Facto	Factor		
	1	2		
Q1. A teacher should be able to communicate effectively	.771	089		
Q2. A teacher should be entertaining	.563	025		
Q3. A teacher should be approachable	.795	035		
Q4. A teacher should be able to motivate me	.811	.006		
Q5. A teacher should not display passion when teaching	598	087		
Q6. A teacher should be able to explain statistical concepts well	.004	.631		
Q7. A teacher should have the neccesary expertise in statistics	041	.703		
Q8. A teacher should be well versed in SPSS	010	.642		
Q9. A teacher should be able to clearly explain how to read SPSS outputs	.048	.634		
Q10. A teacher should be knowledgeable in research methodology	017	.683		
Q11. A teacher should be good looking and humorous	287	233		

jcu.edu.sį

Rotation

- Analyze → Dimension
 Reduction → Factor →
 Rotation
- Select Direct Oblimin as a Method
- Continue

jcu.edu.sg

- Select Options → Suppress small coefficients → .3 (this is done to aid interpretation of the matrix table
- Continue, and OK

Factor Analysis: Rotation X	Missing Values
	Exclude cases listwise
Method	Exclude cases pairwise
© <u>N</u> one	Replace with mean
© <u>V</u> arimax	
Direct Oblimin O Promax Delta: O Kanna 4	Coefficient Display Format
	Sorted by size
Dianlau	Suppress small coefficients
Display Rotated solution Loading plot(s)	Absolute value below: .30
Maximum Iterations for Convergence: 25	Continue Cancel Help
Cancel Help	

💼 Factor Analysis: Options

х

Rotation

- Look at Pattern Matrix for factor loadings AFTER rotation (if an orthogonal rotation was chosen, look at Rotated Factor Matrix instead)
- The empty fields represent suppressed coefficients (<.3)
- We can see that Q1-Q5 load heavily on factor 1, while Q6-Q10 load on factor 2
- Q11 appears to not load on either factor, so this item can be dropped

	Factor		
	1	2	
Q1. A teacher should be able to communicate effectively	.774		
Q2. A teacher should be entertaining	.565		
Q3. A teacher should be approachable	.797		
Q4. A teacher should be able to motivate me	.812		
Q5. A teacher should not display passion when teaching	597		
Q6. A teacher should be able to explain statistical concepts well		.632	
Q7. A teacher should have the neccesary expertise in statistics		.706	
Q8. A teacher should be well versed in SPSS		.643	
Q9. A teacher should be able to clearly explain how to read SPSS outputs		.633	
Q10. A teacher should be knowledgeable in research methodology		.685	
Q11. A teacher should be good looking and humorous			
Extraction Method: Principal Rotation Method: Oblimin v Normalization.	Axis Factoring vith Kaiser	l.	

Interpreting the Factors

- Now that we know which factor each item loads on, we can label the factors
- Looking at the items, it appears that Factor 1 refers to a teacher's personal characteristics (entertaining, approachable, etc.)
- Factor 2 seems to be subject oriented (statistical concepts, SPSS, etc.)
- Therefore, in this questionnaire, it appears that there are 2 dimensions: person-oriented, and subject-oriented characteristics.

	Fact	or
	1	2
Q1. A teacher should be able to communicate effectively	.774	
Q2. A teacher should be entertaining	.565	
Q3. A teacher should be approachable	.797	
Q4. A teacher should be able to motivate me	.812	
Q5. A teacher should not display passion when teaching	597	
Q6. A teacher should be able to explain statistical concepts well		.632
Q7. A teacher should have the neccesary expertise in statistics		.706
Q8. A teacher should be well versed in SPSS		.643
Q9. A teacher should be able to clearly explain how to read SPSS outputs		.633
Q10. A teacher should be knowledgeable in research methodology		.685
Extraction Method: Principa Rotation Method: Oblimin v Normalization.	l Axis Factorin with Kaiser	g.

Write-Up

An example write-up can be found on page 231 in

Allen, P., Bennett, K., & Heritage, B. (2019). SPSS Statistics: A *Practical Guide* (4th ed.). Cengage Learning.

Questions?

learningcentre-singapore@jcu.edu.au

www.jcu.edu.sg